Open Science and Research Ethics in I-O Psychology

Jamie Field, PhD

<u>james.field2@mail.wvu.edu</u>

Tuesday October 26, 2021

**These PowerPoint slides and other resources can be found at: https://jamiefield.github.io/research/gmu2021

Agenda

- Personal introduction
- 60,000ft view of a big "The Problem" (questionable research practices)
- A (potential) solution: Open science practices (examples; limitations; etc.)
- Highways and Byways: The Open Science Infrastructure
- How to Get Involved
- Q&A session | Open discussion

 Please accept my sincerest apologies for my last-minute postponement back in the spring semester!

- Please accept my sincerest apologies for my last-minute postponement back in the spring semester!
- Major thanks to Steven and Seth for being so understanding during a particularly stressful time.

- Please accept my sincerest apologies for my last-minute postponement back in the spring semester!
- Major thanks to Steven and Seth for being so understanding during a particularly stressful time.
- I am delighted that you invited me back!

- I also want to recognize some of my close collaborators
 - Frank Bosco
 - Martin Götz
 - George Banks
 - Ernest O'Boyle
 - Frew Oswald

- (Virginia Commonwealth U.)
- (University of Zurich)
- (U. of North Carolina at Charlotte)
- (Indiana U.)
- (Rice U.)

Originally from Tralee, County Kerry

WestVirginiaUniversity.

Originally from Tralee, County Kerry

WestVirginiaUniversity.

 Originally from Tralee, County Kerry

Came to the U.S. in 2004 on a golf scholarship

• How it started....

• How it started

Here is 14-year-old me being presented with the "Junior Golfer of the Year" medal by Arnold Palmer

For those of you who are not familiar with golf, he's a legend!!

• How it's going...

How it's going...

Here's a picture of my golf clubs (taken last night).

They hang in my garage.

rginiaUniversity.

 Originally from Tralee, County Kerry

Came to the U.S. in 2004 on a golf scholarship

Glenville, WV → Huntington, WV,
 → Richmond, VA

- Originally from Tralee, County Kerry
- Came to the U.S. in 2004 on a golf scholarship
- Glenville, WV → Huntington, WV,
 → Richmond, VA → Morgantown, WV
- Assistant Professor at WVU since fall 2017
 John Chambers College of

Business and Economics

Meta-Science (incl. Big Data)

栄

More alike than different? A comparison of variance explained by cross-cultural models

James G. Field¹, Frank A. Bosco², David Kraichv³. Krista L. Uggerslev⁴ and Mingang K. Geiger¹

¹Department of Management, John Chambers College of Business and Economics. West Virginia University, Morgantown, WV 26506, USA; ²Department of Management and Entrepreneurship, School of Business, Virginia Commonwealth University, Richmond, VA 23284, USA: ³Department of Human Resources and Organizational Behaviour, Edwards School of Business, University of Saskatchewan, Saskatoon, SK S7N 5A7, Canada; ⁴ Applied Research Chair in Leadership and Talent, Office of Research and Innovation. Northern Alberta Institute of Technology, Edmonton, AB T5G 2R1, Canada

Correspondence: JG Field, Department of Management, John Chambers College of Business and Economics, West Virginia University Morgantown, WV 26506, USA e-mail: iames.field2@mail.wvu.edu

Abstract

Relatively little is known about the extent to which culture moderates findings in applied psychology research. To address this gap, we leverage the metaBUS database of over 1,000,000 published findings to examine the extent to which six popular cross-cultural models explain variance in findings across 136 bivariate relationships and 56 individual cultural dimensions. We compare moderating effects attributable to Hofstede's dimensions, GLOBE's practices, GLOBE's values, Schwartz's Value Survey, Ronen and Shenkar's cultural clusters, and the United Nations' M49 standard. Results from 25,296 multilevel metaanalyses indicate that, after accounting for statistical artifacts, cross-cultural models explain approximately 5-7% of the variance in findings. The variance explained did not vary substantially across models. A similar set of analyses on observed effect sizes reveal differences of |r| = .05-.07 attributable to culture. Variance among the 136 bivariate relationships was explained primarily by sampling error, indicating that cross-cultural moderation assessments require atypically large sample sizes. Our results provide important information for understanding the overall level of explanatory power attributable to crosscultural models, their relative performance, and their sensitivity to variance in the topic of study. In addition, our findings may be used to inform power analyses for future research. We discuss implications for research and practice. Journal of International Business Studies (2021). https://doi.org/10.1057/s41267-021-00428-z

Keywords: meta-analysis; big data; open science; cross-cultural research/measurement issues

WestVirginiaUniv<u>ersity</u>.

Open Science

RESEARCH ARTICLE SUMMARY

PSYCHOLOGY

Estimating the reproducibility of psychological science

Open Science Collaboration*

INTRODUCTION: Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. Scientific claims should not gain credence because of the status or authority of their originator but by the replicability of their supporting evidence. Even research of exemplary quality may have irreproducible empirical findings because of random or systematic error.

RATIONALE: There is concern about the rate and predictors of reproducibility, but limited evidence. Potentially problematic practices include selective reporting, selective analysis, and insufficient specification of the conditions necessary or sufficient to obtain the results. Direct replication is the attempt to recreate the conditions believed sufficient for obtaining a **pre**- viously observed finding and is the means of establishing reproducibility of a finding with new data. We conducted a large-scale, collaborative effort to obtain an initial estimate of the reproducibility of psychological science.

RESULTS: We conducted replications of 100 experimental and correlational studies published in three psychology journals using highpowered designs and original materials when available. There is no single standard for evaluating replication success. Here, we evaluated reproducibility using significance and *P* values, effect sizes, subjective assessments of replication teams, and meta-analysis of effect sizes. The mean effect size (r) of the replication effects ($M_r = 0.197$, SD = 0.257) was half the magnitude of the mean effect size of the original effects ($M_r = 0.403$, SD = 0.188), representing a

Open Science Journal of Business and Psychology https://doi.org/10.1007/s10869-018-9547-8

ORIGINAL PAPER

Answers to 18 Questions About Open Science Practices

George C. Banks¹ · James G. Field² · Frederick L. Oswald³ · Ernest H. O'Boyle⁴ · Ronald S. Landis⁵ · Deborah E. Rupp⁶ · Steven G. Rogelberg¹

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Open science refers to an array of practices that promote openness, integrity, and reproducibility in research; the merits of which are being vigorously debated and developed across academic journals, listservs, conference sessions, and professional associations. The current paper identifies and clarifies major issues related to the use of open science practices (e.g., data sharing, study pre-registration, open access journals). We begin with a useful general description of what open science in organizational research represents and adopt a question-and-answer format. Through this format, we then focus on the application of specific open science practices and explore future directions of open science. All of this builds up to a series of specific actionable recommendations provided in conclusion, to help individual researchers, reviewers, journal editors, and other stakeholders develop a more open research environment and culture.

Keywords Open science · Philosophy of science · Questionable research practices · Research ethics

Research Methods

Journal of Applied Psychology 2015, Vol. 100, No. 2, 431-449 © 2014 American Psychological Association 0021-9010/15/\$12.00 http://dx.doi.org/10.1037/a0038047

Correlational Effect Size Benchmarks

Frank A. Bosco Virginia Commonwealth University

Kulraj Singh South Dakota State University Herman Aguinis Indiana University

James G. Field Virginia Commonwealth University

Charles A. Pierce University of Memphis

Effect size information is essential for the scientific enterprise and plays an increasingly central role in the scientific process. We extracted 147,328 correlations and developed a hierarchical taxonomy of variables reported in Journal of Applied Psychology and Personnel Psychology from 1980 to 2010 to produce empirical effect size benchmarks at the omnibus level, for 20 common research domains, and for an even finer grained level of generality. Results indicate that the usual interpretation and classification of effect sizes as small, medium, and large bear almost no resemblance to findings in the field, because distributions of effect sizes exhibit tertile partitions at values approximately one-half to one-third those intuited by Cohen (1988). Our results offer information that can be used for research planning and design purposes, such as producing better informed non-nil hypotheses and estimating statistical power and planning sample size accordingly. We also offer information useful for understanding the relative importance of the effect sizes found in a particular study in relationship to others and which research domains have advanced more or less, given that larger effect sizes indicate a better understanding of a phenomenon. Also, our study offers information about research domains for which the investigation of moderating effects may be more fruitful and provide information that is likely to facilitate the implementation of Bayesian analysis. Finally, our study offers information that practitioners can use to evaluate the relative effectiveness of various types of interventions.

Keywords: effect size, statistical analysis, null hypothesis testing, big data

Research Methods

estVirginiaUniversity.

Journal of Business and Psychology (2021) 36:349-365 https://doi.org/10.1007/s10869-020-09687-3

ORIGINAL PAPER

How robust is our cumulative knowledge on turnover?

James G. Field¹ · Frank A. Bosco² · Sven Kepes²

Published online: 28 February 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

Although systematic reviews are considered the primary means for generating cumulative knowledge and their results are often used to inform evidence-based practice, the robustness of their meta-analytic summary estimates is rarely investigated. Consequently, the results of published systematic reviews and, by extension, our cumulative knowledge have come under scrutiny. Using a comprehensive approach to sensitivity analysis, we examined the impact of outliers and publication bias, as well as their combined effect, on meta-analytic results on employee turnover. Our analysis of 205 distributions from seven recently published meta-analytic results on turnover are often affected by publication bias and, less frequently, outliers. Moreover, we observed that 33% of the recommendations for practice provided in the original systematic reviews on turnover were not robust to outliers and/or publication bias, which, if implemented by practitioners, could yield unexpected consequences and, thus, widen the science-practice gap. We argue that practitioners should be skeptical about implementing practices recommended by meta-analytic studies that do not include sensitivity analyses. To improve sensitivity analysis reporting rates and, thus, the transparency of meta-analytic findings and recommendations for practice, we introduce an open-access software (metasen.shinyapps.io/gen1/) that conducts all analyses performed in the current study. We provide guidelines and recommendations for future turnover studies and sensitivity analyses in the meta-analytic context.

Keywords Turnover · Sensitivity analysis · Publication bias · Outliers

Research Methods &

Software Develop.

See:

https://metasen.shinyapps.io/gen1/ https://casst.shinyapps.io/gen1/

Meta-Sen: A Comprehensive Sensitivity Analysis Tool for Meta-Analytic Data

oad meta	-analytic data: Choose CSV file			
1	No file selected			
	Sensitivity Analysis Results	Data with Outlier Label	d-score Results	

Welcome to the Meta-Sen interface!

Meta-Sen is a cloud-based, open access software that allows users to upload a meta-analytic dataset and provides as output all essential meta-analytic re

Meta-Sen performs the following...

- A meta-analysis using the Hedges and Olkin (1985; see also Hedges & Olkin, 2014) approach to meta-analysis
- Two outlier detection assessments
 - One-sample removed analysis (Borenstein, Hedges, Higgins, & Rothstein, 2009)
 - Influence diagnostics (Viechtbauer & Cheung, 2010; see also Viechtbauer, 2017)
 - This multivariate, multidimensional outlier detection procedure is performed iteratively until all outliers are removed from the meta-
- Five publication bias detection assessments
 - · Contour-enhanced funnel plots (Peters, Sutton, Jones, Abrams, & Ruston, 2008)
 - Trim and fill models (Duval and Tweedie, 2000)
 - Cumulative meta-analysis by precision (Kepes, Banks, McDaniel, & Whetzel, 2012)
 - A priori selection models (Vevea & Woods, 2005)
 - Precision-effect test-precision effect estimate with standard error analysis (PET-PEESE; Stanley & Doucouliagos, 2014)
 - · One new visual approach to summarizing meta-analytic and sensitivity analysis results
 - A plot that displays the dispersion of meta-analytic and sensitivity analysis results, before and after outlier removal, which will allow users to

Welcome to the Cross-Area Sample Size Tool (CASST) Interface!

Home	Comparisons Between Cross-Cultural Models	Comparisons Between GLOBE's Cultural Practices	Comparisons Between GLOBE' Cultural Values	Comparisons Between Hofstede's Cultural Values	Comparisons Between Ronen & Shenkar's Cultural Clusters	Comparisons Between Schwartz's Cultural Values	Comparisons Between UN's M49 Regions	Cross-Cultural Effects Nested Within Bivariate Relation	
------	--	---	---	---	---	---	---	---	--

Welcome!

CASST is a cloud-based, open access software that allows users to examine the magnitude of culture-as-moderator effects (i.e., Type II effects -- see Kirkman et al., 2006), on 136 commonly investigated substantive bivar performance). To this end, CASST conducts two completely separate rounds of analyses.

- One round compares the incremental variance explained by culture controlling for sampling error, measure unreliability, and publication year (i.e., temporal trends). The key outcome of interest is the change in adjustipredictor of corrected effect size, and Model 2 contains publication year and the cultural model (e.g., six Hofstede dimensions). CASST also allows users to conduct analyses on the individual dimensions separately (
- Another ound of analyses controls for only sampling error and examines the extent to which observed mean effect sizes (e., bate-dones meta-analysis) differ accross culture. Such like the previous und of analysis dimensions. For cores-culture and accounts and/taxies (e.g., Fohdred dimensions). For control dimensions. The resulting standardided sixpe controllent in interpreted as a P contain categorical attributes (e.g., Ronen & Shenhar's custers). CASST conductaria moderating effect size to terms of Cohers's (i.e., the difference between two Faher ±ransformers in manalyses is effect (outcomes respected nucleus effect). Size of the difference between two Faher ±ransformers in manalyses is effect and culture precisions (i.e., the difference between two Faher ±ransformers in manalyses).

A full deciption of al analytic procedures can be found in our paper, which is published in finisher journal amer). A link to the paper can be found here, finisher lines thinks to be paper can be brought here finisher to journal weepage [CASSF draws on the metalBU database (see metaBUS G2), which contains 103/319 dometational coefficients reported in 6.6 & articles between 910-802-017, to samithe the extent to which culture as-moderator effect: commonly investigated burate relations. This software may help researchers acertain what a typical cross-cultural difference is for certain substantive relations, which will help them to determine how many participants a with sufficient statistical power:

Enough about me!

Let's talk about research ethics and

open science practices...

Rapid Fire Motivating Question:

Rapid Fire Motivating Question:

What are the biggest challenges

facing our science?

Biggest Challenges Answers

You provided lots of great answers!

Biggest Challenges Answers

- You provided lots of great answers!
- Indeed, the diversity of responses reveals how difficult it is to do what we do!

Biggest Challenges Answers

- You provided lots of great answers!
- Indeed, the diversity of responses reveals how difficult it is to do what we do!
- Our goal should not be *perfection* (there is no such thing, IMO).
 Instead, our goal should be *improvement*.

Stanford Prison Experiment

The Stanford prison experiment (SPE) was a social psychology experiment that attempted to investigate the psychological effects of perceived power, focusing on the struggle between prisoners and prison officers.

https://en.wikipedia.org/wiki/Stanford_prison_experiment

WestVirginiaUniversity.

Stanford Prison Experiment

The Stanford prison experiment (SPE) was a social psychology experiment that attempted to investigate the psychological effects of perceived power, focusing on the struggle between prisoners and prison officers.

https://en.wikipedia.org/wiki/Stanford prison experiment

Milgram Obedience Experiment

Measured the willingness of study participants, men from a diverse range of occupations with varying levels of education, to obey an authority figure who instructed them to perform acts conflicting with their personal conscience.

https://en.wikipedia.org/wiki/Milgram_experiment

Stanford Prison Experiment

The Stanford prison experiment (SPE) was a social psychology experiment that attempted to investigate the psychological effects of perceived power, focusing on the struggle between prisoners and prison officers.

Milgram Obedience Experiment

Measured the willingness of study participants, men from a diverse range of occupations with varying levels of education, to obey an authority figure who instructed them to perform acts conflicting with their personal conscience.

Tuskegee Syphilis Experiment

Conducted by the US Public Health Service and CDC, the purpose of the study was to observe the natural history of untreated syphilis. Although the African-American men who participated in the study were told that they were receiving free health care from the federal government of the United States, they were not.

https://en.wikipedia.org/wiki/Tuskegee_Syphilis_Study

https://en.wikipedia.org/wiki/Stanford_prison_experiment

VirginiaUniversity.

https://en.wikipedia.org/wiki/Milgram_experiment

Stanford Prison Experiment

The Stanford prison experiment (SPE) was a social psychology experiment that attempted to investigate the psychological effects of perceived power, focusing on the struggle between prisoners and prison officers.

Milgram Obedience Experiment

Measured the willingness of study participants, men from a diverse range of occupations with varying levels of education, to obey an authority figure who instructed them to perform acts conflicting with their personal conscience.

Tuskegee Syphilis Experiment

Conducted by the US Public Health Service and CDC, the purpose of the study was to observe the natural history of untreated syphilis. Although the African-American men who participated in the study were told that they were receiving free health care from the federal government of the United States, they were not.

Project MKUltra

A program of experiments on human subjects that were designed and undertaken by the CIA were intended to identify and develop drugs and procedures to be used in interrogations in order to weaken the individual and force confessions.

https://en.wikipedia.org/wiki/Project_MKUltra

https://en.wikipedia.org/wiki/Stanford prison experiment

https://en.wikipedia.org/wiki/Milgram_experiment

https://en.wikipedia.org/wiki/Tuskegee_Syphilis_Study

Looking ahead...

 Surely all the hard lessons are behind us... right?

Looking ahead...

 It looks like our problems may get even more complicated in the future...

Looking ahead... Quarterly

It looks like our

problems may

get even more

complicated in

the future...

SPECIAL ISSUE: MANAGING A

FAILURES OF FAIRNESS IN AUTOMATION REQUIRE A DEEPER UNDERSTANDING OF HUMAN-ML AUGMENTATION¹

Mike H. M. Teodorescu

Carroll School of Management, Boston College, Fulton 460, 140 Commonwealth Avenue. Chestnut Hill, MA 02467 U.S.A. (mike.teodorescu@bc.edu)

Lily Morse John Chambers College of Business and Economics, West Virginia University, Morgantown, WV 26506 U.S.A. {lily.morse@mail.wvu.edu}

Yazeed Awwad

Center for Complex Systems, King Abdulaziz City for Science & Technology, Riyadh 12354 SAUDI ARABIA, and Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building E18-309, Cambridge, MA 02139 U.S.A. (awwad@mit.edu)

Gerald C. Kane

Carroll School of Management, Boston College, Fulton 460, 140 Commonwealth Avenue. Chestnut Hill, MA 02467 U.S.A. (gerald.kane@bc.edu)

Machine learning (ML) tools reduce the costs of performing repetitive, time-consuming tasks yet run the risk of introducing systematic unfairness into organizational processes. Automated approaches to achieving fairness often fail in complex situations, leading some researchers to suggest that human augmentation of ML tools is necessary. However, our current understanding of human-ML augmentation remains limited. In this paper, we argue that the Information Systems (IS) discipline needs a more sophisticated view of and research into human-ML augmentation. We introduce a typology of augmentation for fairness consisting of four quadrants: reactive oversight, proactive oversight, informed reliance, and supervised reliance. We identify significant intersections with previous IS research and distinct managerial approaches to fairness for each quadrant. Several potential research questions emerge from fundamental differences between ML tools trained on data and traditional IS built with code. IS researchers may discover that the differences of ML tools undermine some of the fundamental assumptions upon which classic IS theories and concepts rest. ML may require massive rethinking of significant portions of the corpus of IS research in light of these differences, representing an exciting frontier for research into human-ML augmentation in the years ahead that IS researchers should embrace.

Keywords: Fairness, machine learning, augmentation, automation, artificial intelligence

Looking ahead.... (

It looks like our
 problems may
 get even more
 complicated in

the future...

FAILURES OF FAIRNESS IN AUTOMATION REQUIRE A DEEPER UNDERSTANDING OF HUMAN-ML AUGMENTATION¹

SPECIAL ISSUE: MANAGING A

Mike H. M. Teodorescu

Carroll School of Management, Boston College, Fulton 460, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 U.S.A. (mike.teodorescu@bc.edu)

Lily Morse John Chambers College of Business and Economics, West Virginia University Morgantown, WV 26506 U.S.A. (iity.morse@mail.wvu.edu)

Yazeed Awwad

Center for Complex Systems, King Abdulaziz City for Science & Technology, Riyadh 12354 SAUDI ARABIA and Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building E18-309, Cambridge, MA 02139 U.S.A. (awwad@mit.edu)

Gerald C. Kane

Carroll School of Management, Boston College, Fulton 460, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 U.S.A. (gerald.kane@bc.edu)

Machine learning (ML) tools reduce the costs of performing repetitive, time-consuming tasks yet run the risk of inroducing systematic inquirences into organizational processes. A Monoted approaches to achieving fairness often fail in complex situations, leading some researchers to suggest that human augmentation of ML tools is necessar. However, our current understanding of human-ML augmentation remains limited. In this paper, we argue that the Information Systems (IS) discipline needs a more sophisticated view of and research into human-ML augmentation. We introduce a spologo of augmentation for fairness constitution of fairness networks, provide the organization of the structure of the structure of the structure of a structure over reactive oversight, proactive oversight, informed reliance, and supervised reliance. We identify significant interactions with previous 15 researchers may discover that the differences of ML tools trained on data and traditional for shuft with code. IS researchers may discover that the differences of ML tools andermine some of the fundamentia assumptions upon which classic IS theories and concepts rest. ML may require ansaksve reliabing of significant portions of the corpus of STs searchers in thigh of these differences, representing an exciting frontier for research into human-ML augmentation in the years ahead that IS researchers should embrace.

Keywords: Fairness, machine learning, augmentation, automation, artificial intelligence

Digital Phenotyping of Big Five Personality Traits via Facebook Data Mining: A Meta-Analysis

Davide Marengo^{1*} & Christian Montag²

¹ Department of Psychology, University of Turin, Italy
² Department of Molecular Psychology, Institute for Psychology and Education, Ulm University, Germany

Abstract

Background: About 2.5 billion people around the world currently have an active account on Facebook. By interacting with Facebook, users generate a vast dataset of information with potential links to psychological and behavioral characteristics. In particular, several researchers have already demonstrated that it is feasible to predict personality from activity logs, posted text, or "Like" behaviors on Facebook.

Objectives: In this study, we carried out a meta-analysis of the available literature on predicting personality from Facebook data.

Methods: Meta-analysis computations were performed using a multilevel approach.

Results: Results showed that, on average, the accuracy of prediction of user personality scores through the mining of Facebook data is moderate (r = 34). However, prediction accuracy was improved when models included demographic variables, and multiple types of digital footprints.

Discussions: Currently, generating personality predictions from Facebook data is feasible, but accuracy is at best moderate. Therefore, current predictions cannot be used for assessment purposes at the individual level, but may provide useful information when conducting group-level assessments. However, prediction accuracy is expected to improve as larger datasets and new types of data are mined for prediction purposes.

Keywords: social media, personality, Facebook, digital phenotyping, psychoinformatics

Article History Received 29 November 2019 Revised 29 Februar 2020 Accepted 1 March 2020

DOI 10.24989/dp.v1i1.1823

Current research environment

• The 2010s was not a good decade for science in general...

Current research environment

- The 2010s was not a good decade for science in general...
 - Statistical tests in primary studies appeared to be grossly underpowered (Götz et al., 2021; O'Boyle et al., 2019)
 - Growing empirical evidence regarding the incidence and impact of questionable research practices (Banks et al., 2016a; Banks et al., 2016b; Bosco et al., 2016)
 - Replication rates for primary studies have ranged from 39% to 77% when using a criterion of p > .05 (Klein et al., 2018b; Open Science Collaboration, 2015
 - Robustness of meta-analytic findings have been brought into question (Field et al., 2021; Harrison et al., 2017)

Current research environment

• Together, the accumulated evidence supported the notion that the psychological sciences are experiencing a "crisis of confidence"

(De Boeck & Jeon, 2018)

• The current situation is due in part to researchers engaging in questionable research practices (QRPs)

• QRPs operate in the ambiguous space between what one might consider best practices and academic misconduct

Common examples of QRPs:

(1) Selectively report hypotheses (see O'Boyle, Banks, & Gonzalez-Mule, 2016)

retractionwatch.com

Common examples of QRPs:

(1) Selectively report hypotheses

(see O'Boyle, Banks, & Gonzalez-Mule, 2016)

(2) Exclude data post hoc

(see De Vries, Anderson, & Martinson, 2006)

retractionwatch.com

Common examples of QRPs:

(1) Selectively report hypotheses

(see O'Boyle, Banks, & Gonzalez-Mule, 2016)

(2) Exclude data post hoc (see De Vries, Anderson, & Martinson, 2006)

(3) HARKing (see Bosco et al, 2016) retractionwatch.com

Common examples of QRPs:

(1) Selectively report hypotheses

(see O'Boyle, Banks, & Gonzalez-Mule, 2016)

(2) Exclude data post hoc (see De Vries, Anderson, & Martinson, 2006)

(3) HARKing

(see Bosco et al, 2016)

(4) Selectively include control variables (see Kepes & McDaniel, 2013)

retractionwatch.com

Common examples of QRPs:

(1) Selectively report hypotheses

(see O'Boyle, Banks, & Gonzalez-Mule, 2016)

(2) Exclude data post hoc

(see De Vries, Anderson, & Martinson, 2006)

(3) HARKing (see Bosco et al, 2016) (4) Selectively include control variables (see Kepes & McDaniel, 2013)

(5) Falsify data (several examples from our field – see retractionwatch.com)

Common examples of QRPs:

(1) Selectively report hypotheses

(see O'Boyle, Banks, & Gonzalez-Mule, 2016)

(2) Exclude data post hoc

(see De Vries, Anderson, & Martinson, 2006)

(3) HARKing (see Bosco et al, 2016) (4) Selectively include control variables (see Kepes & McDaniel, 2013)

(5) Falsify data (several examples from our field – see <u>retractionwatch.com</u>)

(6) *p*-hacking (see Head et al., 2015; Götz et al., 2021)

Current research environment?

Open Science:

A Self-Correction Mechanism for IO Research?

Could there be a silver lining?

Open Science:

A Self-Correction Mechanism for IO Research?

In short order the open science movement is transforming how I-O research is done, reported, and evaluated.

What is Open Science?

Transparent and accessible knowledge that is shared and developed
through collaborative networks (Vicente-Saez & Martinez-Fuentes, 2018)

What is Open Science?

 A thriving facet of the scientific ecosystem that is nurtured by a variety of concepts, ranging from scientific philosophies and cultural norms, to specific practices that operationalize these perspectives and help scholars to enact such norms. (Banks et al., 2018; Götz & Field, in press)

Purpose of Open Science Practices

 To improve the openness, integrity, rigor, and reproducibility of research by preventing research misconduct or reducing questionable research and/or reporting practices

Purpose of Open Science Practices

- To improve the openness, integrity, rigor, and reproducibility of research by preventing research misconduct or reducing questionable research and/or reporting practices
- Can also help to...
 - Promote communication and collaboration
 - Enhance meta-analytic reviews
 - Facilitate a better understanding of the scientific process

(1) Sharing data and analytic files (see Field et al., in press)

oving walls to crease ccess

mplet nting v ard stems

0) court ing replication

(1) Sharing data and analytic files (see Field et al., in press)

WestVirginiaUniversity.

(1) Sharing data and analytic files

(see Field et al., in press)

(2) Justifying statistical significance thresholds (see Lakens et al., 2016)

WestVirginiaUniversity.

(1) Sharing data and analytic files (see Field et al., in press)

(2) Justifying statistical significance thresholds (see Lakens et al., 2016)

Conclusion

Science is diverse, and it is up to scientists to justify the alpha level they decide to use. As Fisher noted14: "...no scientific worker has a fixed level of significance at which, from year to year, and in all circumstances, he rejects hypotheses; he rather gives his mind to each particular case in the light of his evidence and his ideas." Research should be guided by principles of rigorous science¹⁵, not by heuristics and arbitrary blanket thresholds. These principles include not only sound statistical analyses, but also experimental redundancy (e.g., replication, validation, and generalisation), avoidance of logical traps, intellectual honesty, research workflow transparency, and accounting for potential sources of error. Single studies, regardless of their p-value, are never enough to conclude that there is strong evidence for a substantive claim. We need to train researchers to assess cumulative evidence and work towards an unbiased scientific literature. We call for a broader mandate beyond p-value thresholds whereby all justifications of key choices in research design and statistical practice are transparently evaluated, fully accessible, and pre-registered whenever feasible.

(1) Sharing data and analytic files

(see Field et al., in press)

(2) Justifying statistical significance thresholds (see Lakens et al., 2016)

(3) A priori sample size estimation (see Lakens, 2021;Field et al., in press)

WestVirginiaUniversity.

(1) Sharing data and analytic files (see Field et al., in press)

(2) Justifying statistical significance thresholds (see Lakens et al., 2016)

(3) A priori sample size estimation (see Lakens, 2021;Field et al., in press)

Type of justification	When is this justification applicable?
Measure entire population	A researcher can specify the entire population, it is finite, and it is possible to measure (almost) every entity in the population.
Resource constraints	Limited resources are the primary reason for the choice of the sample size a researcher can collect.
Accuracy	The research question focusses on the size of a parameter, and a researcher collects sufficient data to have an estimate with a desired level of accuracy.
A-priori power analysis	The research question has the aim to test whether certain effect sizes can be statistically rejected with a desired statistical power.
Heuristics	A researcher decides upon the sample size based on a heuristic, general rule or norm that is described in the literature, or communicated orally.
No justification	A researcher has no reason to choose a specific sample size, or does not have a clearly specified inferential goal and wants to communicate this honestly.

Source: Lakens (2021)

(1) Sharing data and analytic files (see Field et al., in press)

(2) Justifying statistical significance thresholds (see Lakens et al., 2016)

(3) A priori sample size estimation

(see Lakens, 2021;Field et al., in press)

	Home	Comparisons Between Cross-Cultural Models	Comparisons Between GLOBE's Cultural Practices	Comparisons Between GLOBE' Cultural Values	Comparisons Between Hofstede's Cultural Values	Comparisons Between Rohen & Shenkar's Cultural Clusters	Comparisons Between Schwartz's Cultural Values	Comparisons Between UN's M49 Regions	Cross-Cultural Effects Nested Within Bivariate Relation		
Va	ariable1			Variable2			Cross.Cultural.Mod	el			
	Select Va	riable 1	•	Select Variab	ble2		Select Cross.Cultu	ral.Model •			

Table 8. Cross-Cultural Effects Nested in Specific Bivariate Relation

Note in this tab, users can conduct a largeted query by crossing specific binalitie relation (e.g., job satisfaction-tumover intention) and cross-cultural model (e.g., M45). The observed results represent the average variance explained and moderating effect size due to the selected model for the give binariate relation. The latter can be used to facilitate a prior power analyses.

				s	earch:
Variable1	Variable2	Cross.Cultural.Model	÷ k÷	Change.in.R.2	Absolute.q.or.r (
Conscientiousness	Extraversion	M49	1225	0.08	0.042
Conscientiousness	Emo. stability	M49	1241	-0.001	0.039
Conscientiousness	Negative states	M49	200	0.128	0.081
Conscientiousness	Positive states	1449	112	0.059	0.133
Conscientiousness	Ability	1449	619	0.164	0.074
Conscientiousness	Stressors	1449	83	-0.032	0.025
Conscientiousness	Autonomy	1449	36	-0.001	0.057

Source: Field et al. (in press)

(1) Sharing data and analytic files

(see Field et al., in press)

(2) Justifying statistical significance thresholds (see Lakens et al., 2016)

(3) A priori sample size estimation (see Lakens, 2021;Field et al., in press)

(4) Study and analytic plan pre-registration (see Soderberg et al., 2021; Toth et al., 2021)

(1) Sharing data and analytic files (see Field et al., in press)

(2) Justifying statistical significance thresholds (see Lakens et al., 2016)

(3) A priori sample size estimation (see Lakens, 2021;Field et al., in press)

(4) Study and analytic plan pre-registration (see Soderberg et al., 2021; Toth et al., 2021)

Organizational Behavior and Human Decision Processes 165 (2021) 228-249

Check for updates

Same data, different conclusions: Radical dispersion in empirical results when independent analysts operationalize and test the same hypothesis \ddagger

ABSTRACT

ARTICLE INFO

Keywords: Crowdsourcing data analysis Scientific transparency Research reliability Scientific robustness Researcher degrees of freedom Analysis-contingent results

In this crowdsourced initiative, independent analysts used the same dataset to test two hypotheses regarding the effects of scientistic gender and professional status on verbosity during group meetings. Not only the analytic approach but also the operationalizations of key variables were left unconstrained and up to individual analysts. For instance, analysts could choose to operationalize status as job title, institutional ranking, citation counts, or some combination. To maximize transparency regarating the process by which analytic choices are made, the analysts used a platform we developed called DataRplained to justify both preferred and rejected analytic paths in real time. Analyses lacking sufficient detail, reproducible code, or with statistical errors were excluded, resulting in 29 analyses in the final sample. Researchers reported radically different analyses and dispersed empirical outcomes, in a number of cases obtaining significant effects in opposite directions for the same research question. A Bobs multiverse analysis demonstrates that decisions about how to operationalize variables explain variability in outcomes above and beyond statistical choices (e.g., covariates). Subjective researcher decisions play a critical role in driving the reported empirical results, underscoring the need for open data, systematic postimates checks, and transparency regarding both analytic paths taken and not taken. Implications for organizations and leaders, whose decision making relies in part on scientific findings, consulting reports, and internal analyses by data scientists, are discussed.

Article Published: 24 June 2021

Initial evidence of research quality of registered reports compared with the standard publishing model

Courtney K. Soderberg, Timothy M. Errington, Sarah R. Schiavone, Julia Bottesini, Felix Singleton Thom, Simine Vazire, Kevin M. Esterling & Brian A. Nosek 🖂

 Nature Human Behaviour
 5, 990–997 (2021)
 Cite this article

 1599
 Accesses
 3
 Citations
 251
 Altmetric
 Metrics

Abstract

In registered reports (RRs), initial peer review and in-principle acceptance occur before knowing the research outcomes. This combats publication bias and distinguishes planned from unplanned research. How RRs could improve the credibility of research findings is straightforward, but there is little empirical evidence. Also, there could be unintended costs such as reducing novelty. Here, 353 researchers peer reviewed a pair of papers from 29 published RRs from psychology and neuroscience and 57 non-RR comparison papers. **PBCs** numerically outperformed comparison papers on all 19 criteria (mean difference 0.46, scale range –4 to +4) with effects ranging from RRs being statistically indistinguishable from comparison papers in novelty (0.13, 95% credible interval [-0.24, 0.49]) and creativity (0.22, [-0.14, 0.58]) to sizeable improvements in rigour of methodology (0.99, [0.62, 1.35]) and analysis (0.97, [0.60, 1.34]) and overall paper quality (0.66, [0.30, 1.02]). RRs could improve research quality while reducing publication bias and ultimately improve the credibility of the published literature.

(1) Sharing data and analytic files (see Field et al., in press)

(2) Justifying statistical significance thresholds (see Lakens et al., 2016)

(3) A priori sample size estimation (see Lakens, 2021;Field et al., in press)

(4) Study and analytic plan pre-registration (see Soderberg et al., 2021; Toth et al., 2021)

(1) Sharing data and analytic files

(see Field et al., in press)

(2) Justifying statistical significance thresholds (see Lakens et al., 2016)

(3) A priori sample size estimation (see Lakens, 2021;Field et al., in press)

(4) Study and analytic plan pre-registration (see Soderberg et al., 2021; Toth et al., 2021)

(5) Promoting alternate submission options (see Aguinis et al., 2020; Woznyj et al., 2018)

WestVirginiaUniversity.

estVirginiaUniversity.

Recommendations for narrowing the science-practice gap in open science: Updating the knowledge-production process.

	Recommendation	Benefits	Primary decision-makers involved in implementing the recommendations	Resources needed to implement and enforce the recommendations
(1) Sharing data and analytic files (see Field et al., in press)	 Require preregistration of quantitative and qualitative primary studies 	Definition of the research problem Improved explanation of theoretical and practical problems Study design Improved planning of study design 	Editors, funding agencies, and authors	Financial resources: None Time: 30–60 min of authors' time to preregister using the Open Science Framework and creating an anonymous link for peer-review Additional resources: None Enforcement: Editors can desk-reject
(2) Justifying statistical significance thresholds (see Lakens et al., 2016)		Data analyses • Improved planning of analyses Reporting and publishing • Improved transparency (e.g.,		noncompliant submissions and funding agencies can make funding contingent upon commitment to preregistration
(3) A priori sample size estimation (see Lakens, 2021;Field et al., in press)	2. Introduce a review track using a registered-report format	improved differentiation between confirmatory and exploratory analyses) Reporting and publishing • Improved credibility of findings and computing of improved and outborn	Editors	Financial resources: Standard production costs Time 12 percents
(4) Study and analytic plan pre-registration		 Improved evaluation of contributions and methodological rigor 		Inne: 12 months time of action editor and reviewer Additional resources: none Enforcement: None
(see Soderberg et al., 2021; Toth et al., 2021)	 Introduce a second submission track for results-blind reviews 	Reporting and publishing Improved reviewer evaluations that 	Editors and publishers	Financial resources: Compensation for web developer Time: 2 months? time of a web developer
(5) Promoting alternate submission options		Improved transparency		Additional resources: Training materials for action editors and reviewers, author guidelines Enforcement: None
(see Aguinis et al., 2020; woznyj et al., 2018)	 Motivate authors to discuss validity threats honestly and precisely to re- invigorate the Discussion sections of papers 	 Reporting and publishing Improved credibility and practical usefulness of scientific findings 	Editors and authors	 Financial resources: None Time: Possible involvement of specialized reviewers Additional resources: Training materials for action editors and reviewers; author guidelines Enforcement: Requirement for publication

Source: Aguinis et al. (2020)

(1) Sharing data and analytic files (see Field et al., in press)

(2) Justifying statistical significance thresholds (see Lakens et al., 2016)

(3) A priori sample size estimation (see Lakens, 2021;Field et al., in press)

(4) Study and analytic plan pre-registration (see Soderberg et al., 2021; Toth et al., 2021)

(5) Promoting alternate submission options (see Aguinis et al., 2020; Woznyj et al., 2018)

Table 2. Descriptive statistics from the quantitative data.

		Mean	Strongly				Strongly	%
Γ.	nem	nating	Disagree	Disagree	Neutral	Agree	Agree	ravourable
	1. The organizational sciences would benefit from the results-blind initiative	3.86	3.00%	7.40%	15.80%	48.80%	25.10%	73.90%
	 The results-blind review initiative would be possible to imperient in organizational science journals. The results-blind review initiative would help combat questionable research practices (e.g., selective reporting of hypotheses, hypothesizing after results are known [HARKing], selective use of control variables). 	3.64	5.40%	13.30%	16.70%	40.90%	23.60%	64.50%
	 The results-blind review initiative would help advance the cumulative knowledge in our science. 	3.83	3.00%	6.90%	17.70%	48.80%	23.60%	72.40%
	The potential benefits of implementing the results-blind review initiative outweigh the costs.	3.51	3.00%	10.80%	32.50%	39.90%	13.80%	53.70%
	Journals should offer the results-blind review as a path to submission, in addition to the traditional path	3.76	5.00%	6.00%	16.90%	52.20%	19.90%	72.10%
	 As an <i>author</i>, I would want to pursue a results-blind review path to publication as opposed to the traditional path. 	3.25	7.50%	13.90%	33.80%	35.30%	9.50%	44.80%

The response scale for each item was 1–5. "% Favourable" refers to the percentage of respondents who "Agree" and "Strongly Agree." Participants were randomly assigned to one of two versions (positively worded and negatively worded) of item numbers 1–5. There was an additional item asking whether participants would want to review a results-blind submission, but we dropped it due to a lack of a control item assessing participants' desire to review in general.

Source: Woznyj et al. (2018)

(1) Sharing data and analytic files (see Field et al., in press)

(2) Justifying statistical significance thresholds (see Lakens et al., 2016)

(3) A priori sample size estimation (see Lakens, 2021;Field et al., in press)

(4) Study and analytic plan pre-registration (see Soderberg et al., 2021; Toth et al., 2021)

(5) Promoting alternate submission options (see Aguinis et al., 2020; Woznyj et al., 2018)

Table 2. Descriptive statistics from the quantitative data.

	Mean	Strongly				Strongly	%
item	hating	Disagree	Disagree	Neutrar	Agree	Agree	Tavourable
1. The organizational sciences would benefit from the results-blind initiative	3.86	3.00%	7.40%	15.80%	48.80%	25.10%	73.90%
science journals.	5.55	5.5070	23.0070	10.7070	55.00 /0	10.7070	51.70%
 The results-blind review initiative would help combat questionable research practices (e.g., selective reporting of hypotheses, hypothesizing after results are known [HARKing], selective use of control variables). 	3.64	5.40%	13.30%	16.70%	40.90%	23.60%	64.50%
The results-blind review initiative would help advance the cumulative knowledge in our science.	3.83	3.00%	6.90%	17.70%	48.80%	23.60%	72.40%
The potential benefits of implementing the results-blind review initiative outweigh the costs.	3.51	3.00%	10.80%	32.50%	39.90%	13.80%	53.70%
 Journals should offer the results-blind review as a path to submission, in addition to the traditional path 	3.76	5.00%	6.00%	16.90%	52.20%	19.90%	72.10%
 As an <i>author</i>, I would want to pursue a results-blind review path to publication as opposed to the traditional path. 	3.25	7.50%	13.90%	33.80%	35.30%	9.50%	44.80%

The response scale for each item was 1–5. "% Favourable" refers to the percentage of respondents who "Agree" and "Strongly Agree." Participants were randomly assigned to one of two versions (positively worded and negatively worded) of item numbers 1–5. There was an additional item asking whether participants would want to review a results-blind submission, but we dropped it due to a lack of a control item assessing participants' desire to review in general.

Source: Woznyj et al. (2018)

(1) Sharing data and analytic files

(see Field et al., in press)

(2) Justifying statistical significance thresholds (see Lakens et al., 2016)

(3) A priori sample size estimation (see Lakens, 2021:Field et al., in press)

(4) Study and analytic plan pre-registration (see Soderberg et al., 2021; Toth et al., 2021)

(5) Promoting alternate submission options (see Aguinis et al., 2020; Woznyj et al., 2018)

(6) Transparent review process (Köhler et al. 2020; Zhang et al., 2020)

Industrial and Organizational Psychology (2020), 13, 1-27 doi:10.1017/iop.2019.121 CAMBRIDGE UNIVERSITY PRESS

FOCAL ARTICLE

Supporting robust, rigorous, and reliable reviewing as the cornerstone of our profession: Introducing a competency framework for peer review

Tine Köhler^{1,*}, M. Gloria González-Morales², George C. Banks³, Ernest H. O'Boyle⁴^(a), Joseph A. Allen⁵, Ruchi Sinha⁶, Sang Eun Woo⁷, and Lisa M. V. Gulick⁸

¹Department of Management and Marketing, The University of Melbourne, Parkville, Victoria, Australia; ²Department of Psychology, University of Guelph, Guelph, Ontario, Candaä, ³University of North Carolina-Charlotte, North Carolina, USA; ⁴Kelley School of Business, Indiana University, Bloomington, Indiana, USA; ⁴University of Utah Health, Salt Lake City, Utah, USA; ⁴UniSA Business School, University of South Australia, Adelaide, South Australia, Australia; ⁷Purdue University, West Lafayette, Indiana, USA; and ⁴Bendelta, Sydney, New South Wales, Australia ⁴Corressonding university. Finde Mediane Mediane

(Received 15 December 2018; revised 16 September 2019; accepted 21 September 2019)

Abstract

Peer review is a critical component toward facilitating a robust science in industrial and organizational (1-O) psychology. Peer review exists beyond academic publishing in organizations, university departments, grant agencies, classrooms, and many more work contexts. Reviewers are responsible for judging the quality of research conducted and submitted for evaluation. Furthermore, they are responsible for treating authors and their work with respect, in a support vie and developmental manner. Given its central role in our profession, it is curious that we do not have formalized review guidelines or standards and that most of us never receive formal training in peer reviewing. To support this endeavor, we are proposing a competency framework for peer review. The purpose of the competency framework is to provide a definition of excellent peer review. In gene review, the vertex clarity around expectations for peer review, standards for good peer reviews, sud opportunities for training the behaviors required to deliver good peer reviews. We further discuss how the competency framework can be used to improve peer reviewing and suggest additional steps forward that involve suggestions for how stakeholders can get involved in forstring high-quality peer reviewing.

Keywords: peer review; competency framework; developmental feedback; reliable reviewing

(6) Transparent review process

(Köhler et al. 2020; Zhang et al., 2020)

(1) Sharing data and analytic files (see Field et al., in press)

(2) lustifying statistical significance thresholds

Conclusion

In conclusion, we believe the benefits of open peer review outweigh its limitations. As a field, we ought not to let the fear of incivility obstruct the betterment of our science. Despite its limitations, open peer review is a viable solution toward improving the overall quality of peer reviews. For open review to thrive, however, we believe other changes in reviewer expectations, civility norms, and editorial policy are needed.

Source: Zhang et al. (2020)

(6) Transparent review process (Köhler et al. 2020; Zhang et al., 2020)

WestVırginiaUniversity

(1) Sharing data and analytic files

(see Field et al., in press)

(2) Justifying statistical significance thresholds (see Lakens et al., 2016)

(3) A priori sample size estimation (see Lakens, 2021;Field et al., in press)

(4) Study and analytic plan pre-registration (see Soderberg et al., 2021; Toth et al., 2021)

(5) Promoting alternate submission options (see Aguinis et al., 2020; Woznyj et al., 2018)

(6) Transparent review process (Köhler et al. 2020; Zhang et al., 2020)

(7) Utilizing open access interfaces (e.g., metaBUS) (see Bosco et al., 2020)

WestVirginiaUniversity.
We then searched the metaBUS database (Bosco, Aguinis, Singh, Field, & Pierce, 2015) for existing relationships between variables not identified by Web of Science and gathered three additional estimates. We contacted (see Field et al., in press) Source: Chamberlin et al. (2017)

3.3. Variability in effect size among various subpopulations

Using the Yu et al. (2016) technique, we can discern relationships in the JD-R model which have high levels of variability in effect size in the population. High variability (i.e., 80% CV_R widths \geq 0.55; Bosco et al., 2015; Yu et al., 2016)-particularly if the 80% CV_B includes estimates where the sign (+/-) of the path estimate switches—indicates the presence of significant boundary conditions within the population. The implication, as discussed below, is that there are certain subpopulations (e.g., samples within certain industries, cultures, or various individual differences) which moderate such relationships within the JD-R model. We identify relationships based on suggested benchmarks set forth by Bosco et al. (2015) as an update to Cohen's (1992) conventional benchmarks, and calculated for use in interpreting MASEM effect size distributions by Yu et al. (2016) per the following: small heterogeneity (i.e., the relationship is consistent across the entire population; 80% CV_{β} width of less than 0.18), moderate heterogeneity (i.e., 80% CV_{β} width between 0.18 and 0.54), and large heterogeneity (80% CVB width greater than 0.54).

er et al. 2020; Zhang et al., 2020)

(7) Utilizing open access interfaces (e.g., metaBUS) (see Bosco et al., 2020)

John Chambers College of Business and Economics

Source: Goering et al. (2017)

(1) Sharing data and analytic files (see Field et al., in press)

(2) Justifying statistical significance thresholds (see Lakens et al., 2016)

(3) A priori sample size estimation (see Lakens, 2021;Field et al., in press)

(4) Study and analytic plan pre-registration (see Soderberg et al., 2021; Toth et al., 2021)

(5) Promoting alternate submission options (see Aguinis et al., 2020; Woznyj et al., 2018) (6) Transparent review process (Köhler et al. 2020; Zhang et al., 2020)

(7) Utilizing open access interfaces (e.g., metaBUS) (see Bosco et al., 2020)

(8) Removing paywalls to increase access (see Nosek et al., 2012)

WestVirginiaUniversity.

Psychological Inquiry, 23: 217–243, 2012 Copyright © Taylor & Francis Group, LLC ISSN: 1047-840X print / 1532-7965 online DOI: 10.1080/1047840X.2012.692215 Psychology Press Taylor & Francis Group

TARGET ARTICLE

Scientific Utopia: I. Opening Scientific Communication

Brian A. Nosek Department of Psychology, University of Virginia, Charlottesville, Virginia

Yoav Bar-Anan Department of Psychology, Ben-Gurion University, Beer Sheva, Israel

Existing norms for scientific communication are rooted in anachronistic practices of bygone eras making them needlessly inefficient. We outline a path that moves away from the existing model of scientific communication to improve the efficiency in meeting the purpose of public science—knowledge accumulation. We call for six changes: (a) full embrace of digital communication; (b) open access to all published research; (c) disentangling publication from evaluation; (d) breaking the "one article, one journal" model with a grading system for evaluation and diversified dissemination outlets; (e) publishing peer review; and (f) allowing open, continuous peer review. We address conceptual and practical barriers to change and provide examples showing how the suggested practices are being used already. The critical barriers to change are not technical or financial; they are social. Although scientists guard the status quo, they also have the power to change it. 7) Utilizing open access interfaces (e. see Bosco et al., 2020)

(8) Removing paywalls to increase access (see Nosek et al., 2012)

WestVirginiaUniversity.

(1) Sharing data and analytic files

(see Field et al., in press)

(2) Justifying statistical significance thresholds (see Lakens et al., 2016)

(3) A priori sample size estimation (see Lakens, 2021;Field et al., in press)

(4) Study and analytic plan pre-registration (see Soderberg et al., 2021; Toth et al., 2021)

(5) Promoting alternate submission options (see Aguinis et al., 2020; Woznyj et al., 2018)

(6) Transparent review process (Köhler et al. 2020; Zhang et al., 2020)

(7) Utilizing open access interfaces (e.g., metaBUS) (see Bosco et al., 2020)

(8) Removing paywalls to increase access (see Nosek et al., 2012)

(9) Implementing new reward systems (see Nosek et al., 2012)

6) Transparent review process/ (öhler et al. 2020; Zhang et al., 2020)

(7) Utilizing open access interfaces (e.g., metaBUS) (see Bosco et al., 2020)

(8) Removing paywalls to increase access (see Nosek et al., 2012)

(9) Implementing new reward systems (see Nosek et al., 2012)

PLOS BIOLOGY

META-RESEARCH ARTICLE

Badges to Acknowledge Open Practices: A Simple, Low-Cost, Effective Method for Increasing Transparency

Mallory C. Kidwell¹*, Ljiljana B. Lazarević², Erica Baranski³, Tom E. Hardwicke⁴, Sarah Picchowski⁹, Lina-Sophia Falkenberg⁹, Curtis Kennett⁶, Agnieszka Slowik⁷, Carina Sonnleitner⁷, Chelsey Hess-Holden⁶, Timothy M. Errington¹, Susann Fiedler⁶, Paice A Macal^{1,8}

OPEN ACCESS

Citation: Kidwell MC, Lazarević LB, Baranski E, Hardwicke TE, Piechowski S, Falkenberg L-S, et al. (2016) Badges to Ackrowiedge Open Practices: A Simple, Low-Cost, Effective Method for Increasing Transparency, PLoS Biol 14(5): et 0012656. doi:10.1371/journal.pbio.1002456

Academic Editor: Malcolm R Madeod, University of Edinburgh, UNITED KINGDOM

Received: January 20, 2016

Accepted: April 8, 2016

Published: May 12, 2016

Copyright: © 2016 Kidwell et al. This is an open access article distributed under the terms of the <u>Creative Common Attribution</u> Lorense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Beginning January 2014, Psychological Science gave authors the opportunity to signal open data and materials if they qualified for badges that accompanied published articles. Before badges, less than 3% of Psychological Science articles reported open data. After badges, 23% reported open data, with an accelerating trend; 39% reported open data. After inst half of 2015, an increase of more than an order of magnitude from baseline. There was no change over time in the low rates of data sharing among comparison journals. Moreover, reporting openness does not guarantee openness. When badges were earned, reportedly available data were more likely to be actually available, correct, usable, and complete than when badges were not earned. Open materials also increased to a weaker degree, and there was more variability among comparison journals. Badges are simple, effective signals to promote open practices and improve preservation of data and materials by using independent repositories. 5) Transparent review process

7) Utilizing open access interfaces (e.g., metaBUS)

8) Removing paywalls to increase access

(9) Implementing new reward systems (see Nosek et al., 2012)

West Virginia University.

(1) Sharing data and analytic files

(see Field et al., in press)

(2) Justifying statistical significance thresholds (see Lakens et al., 2016)

(3) A priori sample size estimation (see Lakens, 2021;Field et al., in press)

(4) Study and analytic plan pre-registration (see Soderberg et al., 2021; Toth et al., 2021)

(5) Promoting alternate submission options (see Aguinis et al., 2020; Woznyj et al., 2018)

(6) Transparent review process (Köhler et al. 2020; Zhang et al., 2020)

(7) Utilizing open access interfaces (e.g., metaBUS) (see Bosco et al., 2020)

(8) Removing paywalls to increase access (see Nosek et al., 2012)

(9) Implementing new reward systems (see Nosek et al., 2012)

(10) Encouraging replications (see Ebersole et al., 2020; Open Science Framework, 2015)

Number of Open Science tools

- Open Science Guidelines
 - Transparency and Openness Promotion (TOP) guidelines (see Nosek et al., 2015)

- Open Science Guidelines
 - Transparency and Openness Promotion (TOP) guidelines (see Nosek et al., 2015)
 - Revised reporting standards (Appelbaum et al., 2018)

- Open Science Guidelines
 - Transparency and Openness Promotion (TOP) guidelines (see Nosek et al., 2015)
 - Revised reporting standards (Appelbaum et al., 2018)
 - SIOP's Committee for the Advancement of Professional Ethics (CAPE; see https://www.siop.org/Career-Center/Professional-Ethics)

- Open Science Guidelines
 - Transparency and Openness Promotion (TOP) guidelines (see Nosek et al., 2015)
 - Revised reporting standards (Appelbaum et al., 2018)
 - SIOP's Committee for the Advancement of Professional Ethics (CAPE; see https://www.siop.org/Career-Center/Professional-Ethics)
 - Flagship journals are now encouraging (and in some cases are requiring) researchers to engage in certain open science practices

- Open Access Platforms
 - Open Science Framework (<u>https://osf.io/</u>)

- Open Access Platforms
 - Open Science Framework (<u>https://osf.io/</u>)
 - Hypergraph (<u>http://www.hypergraph.xyz</u>)
 - Statcheck (<u>http://statcheck.io/</u>)
 - GRIM: Granularity Related Inconsistent Means (<u>https://osf.io/3fcbr/</u>)
 - metaBUS (<u>https://www.metabus.org</u>)
 - Meta-Sen (<u>https://metasen.shinyapps.io/gen1/</u>)

Potential Folly of Open Science

- Increased transparency and rigor may come at the expense of serendipitous discovery (see Leavitt, 2013)
- Requiring data sharing may deter members of sensitive populations (e.g., marginalized employees in the workplace) from participating in studies (Gabriel & Wessel, 2013)
- Studies that adhere to certain open science practices may be perceived as being "messier" than traditional studies

Potential Folly of Open Science

- Feasibility concerns (see Banks et al., 2018)
 - Science-publishing industry generates ~\$13 billion annually (see Healy, 2015)
 - Publication sales earns the APA and the Academy of Management roughly \$13 million and \$3 million each year, respectively (per IRS records)

 Open science is not a panacea and cannot address all of the problems inherent to contemporary research

- Open science alone does not fully address rigor or relevance issues.
- Open science efforts do not directly speak to *what* we study

 Open science alone does not directly address or improve statistical power.

 Law of unintended consequences

• The 2010s revealed a painful truth

- The 2010s revealed a painful truth
 - The "crisis" experienced across the psychological sciences could be traced back to decades of loyalism to indoctrinated systems (see Chambers, 2017; Giner-Sorolla, 2012)
 - Broadly speaking, psychological scientists got lost in the excitement of novel discovery and, in the process, ran the risk of losing their legitimacy (Bedeian et al., 2010; Tihanyi, 2020).

Simply put, in the last 10 years, we have come to learn that many of the challenges facing psychological scientists are systemic and cultural, which means that they can likely be addressed through prudent intervention (Munafò et al., 2017; Washburn et al., 2018)

- Simply put, in the last 10 years, we have come to learn that many of the challenges facing psychological scientists are systemic and cultural, which means that they can likely be addressed through prudent intervention (Munafò et al., 2017; Washburn et al., 2018)
- Open science is one possible treatment for these problems, but its effectiveness is not guaranteed.

• We can all play a part in the movement

• We can all play a part in the movement

- We can all play a part in the movement
- "It is time for that to change" (Thau & Moore, 2020)

- We can all play a part in the movement
- "It is time for that to change" (Thau & Moore, 2020)
- Future research will determine if open science is a worthwhile endeavor

Thank you for attending today!

Remember...

You can find this presentation and some other potentially helpful resources at:

jamiefield.github.io/research/gmu2021

Questions? Comments? Complaints?

Feel free to follow up with me...

james.field2@mail.wvu.edu

()

@fieldjamie

jamiefield.github.io

